EphA4 defines a class of excitatory locomotor-related interneurons.
نویسندگان
چکیده
Relatively little is known about the interneurons that constitute the mammalian locomotor central pattern generator and how they interact to produce behavior. A potential avenue of research is to identify genetic markers specific to interneuron populations that will assist further exploration of the role of these cells in the network. One such marker is the EphA4 axon guidance receptor. EphA4-null mice display an abnormal rabbit-like hopping gait that is thought to be the result of synchronization of the normally alternating, bilateral locomotor network via aberrant crossed connections. In this study, we have performed whole-cell patch clamp on EphA4-positive interneurons in the flexor region (L2) of the locomotor network. We provide evidence that although EphA4 positive interneurons are not entirely a homogeneous population, most of them fire in a rhythmic manner. Moreover, a subset of these interneurons provide direct excitation to ipsilateral motor neurons as determined by spike-triggered averaging of the local ventral root DC trace. Our findings substantiate the role of EphA4-positive interneurons as significant components of the ipsilateral locomotor network and describe a group of putative excitatory central pattern generator neurons.
منابع مشابه
Epha4 and V2 Interneurons in the Mammalian Locomotor Network
Central pattern generators (CPGs) are neural networks that can execute halfautomated movements without supraspinal or sensory input. Hindlimb locomotion in mammals is dependent upon such a CPG which is located ventrally in the spinal cord lumbar enlargement. The key features of mammalian locomotion are ipsilateral excitatory interneurons which execute rhythm generation, as well as commissural i...
متن کاملContext-Dependent Gait Choice Elicited by EphA4 Mutation in Lbx1 Spinal Interneurons
The most commonly used locomotor strategy in rodents is left-right limb alternation. Mutation of the axon guidance molecule EphA4 profoundly alters this basic locomotor pattern to synchrony. Here we report that conditional mutation of EphA4 in spinal interneurons expressing the transcription factor Lbx1 degrades the robustness in the expression of left-right alternating gait during development....
متن کاملOptogenetic activation of excitatory premotor interneurons is sufficient to generate coordinated locomotor activity in larval zebrafish.
Neural networks in the spinal cord can generate locomotion in the absence of rhythmic input from higher brain structures or sensory feedback because they contain an intrinsic source of excitation. However, the molecular identity of the spinal interneurons underlying the excitatory drive within the locomotor circuit has remained unclear. Using optogenetics, we show that activation of a molecular...
متن کاملFunctional diversity of excitatory commissural interneurons in adult zebrafish
Flexibility in the bilateral coordination of muscle contraction underpins variable locomotor movements or gaits. While the locomotor rhythm is generated by ipsilateral excitatory interneurons, less is known about the commissural excitatory interneurons. Here we examined how the activity of the V0v interneurons - an important commissural neuronal class - varies with the locomotor speed in adult ...
متن کاملPhenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord.
The ventral spinal cord consists of interneuron groups arising from distinct, genetically defined, progenitor domains along the dorsoventral axis. Many of these interneuron groups settle in the ventral spinal cord which, in mammals, contains the central pattern generator for locomotion. In order to better understand the locomotor networks, we have used different transgenic mice for anatomical c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 39 شماره
صفحات -
تاریخ انتشار 2005